Sanitation
Andreia Bianchini, Ph.D.
Associate Professor
“Adequately treat food-contact surfaces by a process that is effective in destroying vegetative cells of microorganisms of public health significance, [...] reducing numbers of other undesirable microorganisms, but without adversely affecting the product or its safety to the consumer.”
Why Worry About Sanitation?

• Cooking processes are not designed to destroy an infinite number of microorganisms
• Steps must be included to minimize the number of microorganisms before thermal treatment is applied
Sources of Bacterial Contamination

- Raw products
- Equipment, appliances and utensils
- Employee handling
- Water
- Added ingredients
Sanitation Program

Sanitizers

Cleaning of Equipment and Utensils

Cleaning and Sanitizing of all Kitchen Areas

Proper Operating Procedures

Employee Practices

INFUSE

FOOD FROM THOUGHT
Sanitizing Starts with Cleaning...

• Cleaning – complete removal of food soil
• Sanitizing – reduce the microbial load to a level considered safe for public health
• Proper cleaning and sanitizing steps:
  1. Rinse
  2. Clean
  3. Rinse
  4. Sanitize
Cleaning

1. Rinse
   • Removes food particles on surfaces
   • Use warm water, NOT hot water

2. Clean
   • Remove carbohydrates, proteins, fats and mineral soils
   • Detergents: Penetrates soils to lift them from surface and wash away with water

Cleaning Considerations:
   Type of soil present
   Type of surface
   Method available for cleaning
Cleaning Detergents

• Mixture of **physically active** and **chemically active** ingredients

• **Physically active ingredients:**
  – Surfactants
  – Have hydrophilic and hydrophobic components
  – Cleaning action: emulsification, penetration, spreading, foaming and wetting

• **Chemically active ingredients:**
  – Alkaline Builders: Saponify fats
  – Acid Builders: Prevention/removal of stone films
Finish Cleaning...then Sanitizing

3. **Rinse again**
   - Use clean, hot water
   - Remove all detergent residue

4. **Sanitize**
   - Destroy disease causing microorganisms
   - Reduce microbial load to a level appropriate for public health
Types of Sanitizers

- Chlorine
- Iodophors (Iodine compounds)
- Quaternary Ammonium Compounds (QUATs)
- Others:
  - Peroxyacetic Acid
  - Ozone
Chlorination Basics

Organic and Inorganic Impurities

Chlorine Demand
Not effective for disinfection.
Chlorination Basics

Organic and Inorganic Nitrogen Compounds

“Combined Chlorine”
Not as effective for disinfection.
Chlorination Basics

“Free Chlorine”
Available for disinfection.
Chlorination Basics

Chlorine Added
Initial chlorine concentration added to water

Chlorine Demand
Reactions with organic and inorganic material, metals, other compounds present in water prior to disinfection

Total Chlorine
Remaining chlorine concentration after chlorine demand of water is met

Free Chlorine
Concentration of chlorine available for disinfection

Combined Chlorine
Concentration of chlorine combined with organic and inorganic nitrogen compounds in the water. Not as effective for disinfection.

www.cdc.gov
Factors Affecting Chlorination Efficacy

- Chlorine concentration
- pH of the water
- Organic and inorganic matter
- Temperature of the water
Effect of Chlorine Concentration

20 ppm (Free Chlorine)

50 ppm (Free Chlorine)
Effect of pH

The lower the pH, the faster the kill rate!

**Reason:** In acidic environment chlorine is in the form of hypochlorous acid (germicidal).
Effect of pH X [Chlorine]

The more chlorine we add...

...the higher the pH of the water becomes!

So...the pH of water *after* chlorine addition determines kill rates!!!
Effect of Organic and Inorganic Matter

Even when the levels of free chlorine are the same...

...suspended matter physically blocks the action of chlorine, protecting the bacteria!
Effect of Temperature

The higher the temperature,...

...the more active the chlorine is!!!
## Sanitizer Preparation

<table>
<thead>
<tr>
<th>Concentration Range (mg/L)</th>
<th>Minimum Temperature °C (°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pH 10 or less</td>
</tr>
<tr>
<td></td>
<td>pH 8 or less</td>
</tr>
<tr>
<td>25 - 49</td>
<td>49 (120)</td>
</tr>
<tr>
<td>50 - 99</td>
<td>38 (100)</td>
</tr>
<tr>
<td>100</td>
<td>13 (55)</td>
</tr>
</tbody>
</table>

Nebraska Food Code, 2016.
Chlorine Measurements

• (Total) Residual chlorine: measured by titrimetric methods or test kits
• (Free) Residual by the DPD reagent method

Neither the University of Nebraska – Lincoln, or the instructors of this training, endorse these specific brands of chlorine test strips. These are only included here as examples of this type of product.
Bacterial Spore Resistance to Chlorine

Spores are more resistant (10 to 1100 times) to chlorine than vegetative cells...

Sanitation is designed to break the cycle by killing vegetative cells!

2012 Pearson Education, Inc.
Other Sanitizers

- Quaternary Ammonium Compounds (QUATs)
  - Stable to heat
  - Effective over a wide pH range
  - Less affected by organic matter than chlorine
Other Sanitizers

• Peroxyacetic Acid:
  – Tsunami™, Oxonia™
  – Effective antimicrobial fruits, vegetables, meat and poultry carcasses and parts
  – Effective against a wide range of microorganisms
  – Effective in solutions with organic matter
  – Superior in controlling biofilms
Choosing a Sanitizer

- Kills microorganisms quickly
- Safe and non-irritating to employees
- Rinseable
- No adverse affect on food
- Economical
- Easy to test
- Stable
- Readily soluble in water
Beyond Sanitation...

Preventing Contamination and Cross-Contamination

BE AWARE AND SHARE!!!
Sanitation

Andreia Bianchini, Ph.D.
Associate Professor